Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.511
1.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Article En | MEDLINE | ID: mdl-38730367

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Citrus , Lignin , Lignin/metabolism , Citrus/metabolism , Citrus/genetics , Fruit and Vegetable Juices/analysis , Reactive Oxygen Species/metabolism , Transcriptome , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Plant , Fruit/metabolism , Fruit/genetics , Antioxidants/metabolism
2.
Appl Microbiol Biotechnol ; 108(1): 335, 2024 May 15.
Article En | MEDLINE | ID: mdl-38747981

Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.


Zea mays , Substrate Specificity , Esterases/genetics , Esterases/metabolism , Esterases/chemistry , Lignin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Phylogeny
3.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710545

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Cellulose , Food Packaging , Lignin , Lignin/analogs & derivatives , Nanocomposites , Nanofibers , Tensile Strength , Wood , Xylans , Food Packaging/methods , Lignin/chemistry , Nanocomposites/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Wood/chemistry , Nanofibers/chemistry , Xylans/chemistry , Antioxidants/chemistry , Fruit/chemistry
4.
Appl Microbiol Biotechnol ; 108(1): 321, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709299

Most reduced organic matter entering activated sludge systems is particulate (1-100-µm diameter) or colloidal (0.001-1-µm diameter), yet little is known about colonization of particulate organic matter by activated sludge bacteria. In this study, colonization of biopolymers (chitin, keratin, lignocellulose, lignin, and cellulose) by activated sludge bacteria was compared with colonization of glass beads in the presence and absence of regular nutrient amendment (acetate and ammonia). Scanning electron microscopy and quantitative PCR revealed chitin and cellulose were most readily colonized followed by lignin and lignocellulose, while keratin and glass beads were relatively resistant to colonization. Bacterial community profiles on particles compared to sludge confirmed that specific bacterial phylotypes preferentially colonize different biopolymers. Nitrifying bacteria proved adept at colonizing particles, achieving higher relative abundance on particles compared to bulk sludge. Denitrifying bacteria showed similar or lower relative abundance on particles compared to sludge. KEY POINTS: • Some activated sludge bacteria colonize natural biopolymers more readily than others. • Nitrifying bacteria are overrepresented in natural biopolymer biofilm communities. • Biopolymers in wastewater likely influence activated sludge community composition.


Bacteria , Sewage , Wastewater , Biopolymers/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Sewage/microbiology , Wastewater/microbiology , Lignin/metabolism , Microscopy, Electron, Scanning , Cellulose/metabolism , Biofilms/growth & development , Chitin/metabolism , Nitrification , Water Purification/methods
5.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732191

Acacia melanoxylon is highly valued for its commercial applications, with the heartwood exhibiting a range of colors from dark to light among its various clones. The underlying mechanisms contributing to this color variation, however, have not been fully elucidated. In an effort to understand the factors that influence the development of dark heartwood, a comparative analysis was conducted on the microstructure, substance composition, differential gene expression, and metabolite profiles in the sapwood (SW), transition zone (TZ), and heartwood (HW) of two distinct clones, SR14 and SR25. A microscopic examination revealed that heartwood color variations are associated with an increased substance content within the ray parenchyma cells. A substance analysis indicated that the levels of starches, sugars, and lignin were more abundant in SP compared to HW, while the concentrations of phenols, flavonoids, and terpenoids were found to be higher in HW than in SP. Notably, the dark heartwood of the SR25 clone exhibited greater quantities of phenols and flavonoids compared to the SR14 clone, suggesting that these compounds are pivotal to the color distinction of the heartwood. An integrated analysis of transcriptome and metabolomics data uncovered a significant accumulation of sinapyl alcohol, sinapoyl aldehyde, hesperetin, 2', 3, 4, 4', 6'-peptahydroxychalcone 4'-O-glucoside, homoeriodictyol, and (2S)-liquiritigenin in the heartwood of SR25, which correlates with the up-regulated expression of CCRs (evm.TU.Chr3.1751, evm.TU.Chr4.654_667, evm.TU.Chr4.675, evm.TU.Chr4.699, and evm.TU.Chr4.704), COMTs (evm.TU.Chr13.3082, evm.TU.Chr13.3086, and evm.TU.Chr7.1411), CADs (evm.TU.Chr10.2175, evm.TU.Chr1.3453, and evm.TU.Chr8.1600), and HCTs (evm.TU.Chr4.1122, evm.TU.Chr4.1123, evm.TU.Chr8.1758, and evm.TU.Chr9.2960) in the TZ of A. melanoxylon. Furthermore, a marked differential expression of transcription factors (TFs), including MYBs, AP2/ERFs, bHLHs, bZIPs, C2H2s, and WRKYs, were observed to be closely linked to the phenols and flavonoids metabolites, highlighting the potential role of multiple TFs in regulating the biosynthesis of these metabolites and, consequently, influencing the color variation in the heartwood. This study facilitates molecular breeding for the accumulation of metabolites influencing the heartwood color in A. melanoxylon, and offers new insights into the molecular mechanisms underlying heartwood formation in woody plants.


Acacia , Gene Expression Regulation, Plant , Wood , Acacia/metabolism , Acacia/genetics , Wood/metabolism , Wood/chemistry , Flavonoids/metabolism , Lignin/metabolism , Transcriptome , Phenols/metabolism , Gene Expression Profiling/methods , Metabolomics/methods
6.
Rapid Commun Mass Spectrom ; 38(14): e9716, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38738638

RATIONALE: This study overcomes traditional biomass analysis limitations by introducing a pioneering matrix-free laser desorption/ionization (LDI) approach in mass spectrometry imaging (MSI) for efficient lignin evaluation in wood. The innovative acetic acid-peracetic acid (APA) treatment significantly enhances lignin detection, enabling high-throughput, on-site analysis. METHODS: Wood slices, softwood from a conifer tree (Japanese cypress) and hardwood from a broadleaf tree (Japanese beech), were analyzed using MSI with a Fourier transform ion cyclotron resonance mass spectrometer. The developed APA treatment demonstrated effectiveness for MSI analysis of biomass. RESULTS: Our imaging technique successfully distinguishes between earlywood and latewood and enables the distinct visualization of lignin in these and other wood tissues, such as the radial parenchyma. This approach reveals significant contrasts in MSI. It has identified intense ions from ß-O-4-type lignin, specifically in the radial parenchyma of hardwood, highlighting the method's precision and utility in wood tissue analysis. CONCLUSIONS: The benefits of matrix-free LDI include reduced peak overlap, consistent sample quality, preservation of natural sample properties, enhanced analytical accuracy, and reduced operational costs. This innovative approach is poised to become a standard method for rapid and precise biomass evaluation and has important applications in environmental research and sustainable resource management and is crucial for the effective management of diverse biomass, paving the way towards a sustainable, circular society.


Biomass , Lignin , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Wood , Wood/chemistry , Lignin/analysis , Lignin/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Fagus/chemistry
7.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731545

Functional Lyocell fibers gain interest in garments and technical textiles, especially when equipped with inherently bioactive features. In this study, Lyocell fibers are modified with an ion exchange resin and subsequently loaded with copper (Cu) ions. The modified Lyocell process enables high amounts of the resin additive (>10%) through intensive dispersion and subsequently, high uptake of 2.7% Cu throughout the whole cross-section of the fiber. Fixation by Na2CO3 increases the washing and dyeing resistance considerably. Cu content after dyeing compared to the original fiber value amounts to approx. 65% for reactive, 75% for direct, and 77% for HT dyeing, respectively. Even after 50 household washes, a recovery of 43% for reactive, 47% for direct and 26% for HT dyeing is proved. XRD measurements reveal ionic bonding of Cu fixation inside the cellulose/ion exchange resin composite. A combination of the fixation process with a change in Cu valence state by glucose/NaOH leads to the formation of Cu2O crystallites, which is proved by XRD. Cu fiber shows a strong antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia bacteria, even after 50 household washing cycles of both >5 log CFU. In nonwoven blends with a share of only 6% Cu fiber, a strong antimicrobial (CFU > log 5) and full antiviral effectiveness (>log 4) was received even after 50 washing cycles. Time-dependent measurements already show strong antiviral behavior after 30 s. Further, the fibers show an increased die off of the fungal isolate Candida auris with CFU log 4.4, and nonwovens made from 6% Cu fiber share a CFU log of 1.7. Findings of the study predestines the fiber for advanced textile processing and applications in areas with high germ loads.


Anti-Bacterial Agents , Antifungal Agents , Antiviral Agents , Copper , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Copper/chemistry , Copper/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Staphylococcus aureus/drug effects , Textiles , Microbial Sensitivity Tests , Klebsiella pneumoniae/drug effects , Lignin/chemistry , Lignin/pharmacology , Humans
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732136

In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.


Cotton Fiber , Gene Expression Regulation, Plant , Gossypium , Lignin , Plant Proteins , Lignin/biosynthesis , Gossypium/genetics , Gossypium/metabolism , Gossypium/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Wall/metabolism , Cell Wall/genetics , Cellulose/biosynthesis , Cellulose/metabolism , Biosynthetic Pathways
9.
Bioresour Technol ; 401: 130712, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641300

The growing interest in utilizing lignin for dye removal has gained momentum, but there is limited information on the intricate relationship between lignin structural characteristics and adsorption efficacy, especially for its biochar derivatives. This study focused on three types of lignin and their corresponding biochar derivatives. Among them, ZnCl2-activated acidic/alkali densified lignin preparation of lignin-derived active carbon exhibited superior adsorption performance, achieving 526.32 mg/g for methylene blue and 2156.77 mg/g for congo red. Its exceptional adsorption capacity was attributed to its unique structural properties, including low alkyl and O-alkyl group content and high aromatic carbon levels. Furthermore, the adsorption mechanisms adhered to pseudo-second-order kinetics and the Langmuir model, signifying a spontaneous process. Intriguingly, lignin-derived active carbon also demonstrated remarkable recovery capabilities. These findings provide valuable insights into the impact of structural attributes on lignin and its biochar's adsorption performance.


Charcoal , Lignin , Lignin/chemistry , Adsorption , Charcoal/chemistry , Kinetics , Methylene Blue/chemistry , Congo Red/chemistry
10.
Bioresour Technol ; 401: 130728, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657827

This study investigated a lignin-first approach to produce furan-modified lignin from sugarcane bagasse (SB), rice hull (RH), and sunn hemp biomass (SHB) using 5 methylfurfural (MF) and 5 methul-2-furanmethanol (MFM). The reaction time (5 h) was selected based on the delignification of SB using methanol and Ru/C catalyst which yielded the highest hydroxyl content. Delignification of SB with various MF weight ratios (1:1, 1:2, 1:3, 2:1, and 3:1) revealed that 1:1 and 2:1 ratios produced the highest hydroxyl content (7.7 mmol/g) and bio-oil yield (23.2 % wt% total weight). Further exploration identified that RH and MF at 1:1 ratio and SHB and MF at a 2:1 ratio produced the highest hydroxyl content (13.0 mmol/g) and bio-oil yield (31.6 % wt% tot. weight). This study developed a one-step method to extract and modify lignin with furan compounds simultaneously while opening new avenues for developing value-added products.


Furans , Lignin , Lignin/chemistry , Furans/chemistry , Biomass , Agriculture , Oryza/chemistry , Cellulose/chemistry , Saccharum/chemistry , Biofuels , Waste Products , Cannabis/chemistry
11.
Bioresour Technol ; 401: 130731, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663637

There is limited research on physiological and degradation mechanisms of yellow mealworm, a novel organic waste converter, in processing lignocellulosic wastes. This study has selected two types of lignocellulosic wastes, distillers' grains (DG) and maize straw (MS), to feed yellow mealworms. This study investigated the effects of lignocellulosic wastes on the growth, antioxidant system, microbiome, and lipidome of yellow mealworms. The relative growth of lignocellulosic waste group was not significantly different from wheat bran. The antioxidant level was elevated in DG. MS was significantly enriched in cellulose-degrading bacteria in the gut and was accompanied by disturbances in lipid metabolism. The correlation coefficients were used to construct a network connecting diet, microbiota, and lipids. The correlation analysis indicated that two sphingolipids, hexylglyceramide and dihydroglyceramide, were strongly and positively linked with the dominating species. This study provides comprehensive information on physiological and mechanism of mealworms in process of treating lignocellulosic waste.


Gastrointestinal Microbiome , Lignin , Lipid Metabolism , Tenebrio , Lignin/metabolism , Animals , Lipid Metabolism/physiology , Gastrointestinal Microbiome/physiology , Tenebrio/metabolism , Antioxidants/metabolism , Zea mays/metabolism
12.
Bioresour Technol ; 401: 130743, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677388

The cost of detoxification and neutralization poses certain challenges to the development of an economically viable lactic acid biorefinery with lignocellulosic biomass as feedstock. Herein, red mud, an alkaline waste, was explored as both a detoxifying agent and a neutralizer. Red mud treatment of lignocellulosic hydrolysate effectively removed the inhibitors generated in dilute acid pretreatment, improving the lactic acid productivity from 1.0 g/L·h-1 to 1.9 g/L·h-1 in later fermentation. In addition, red mud could replace CaCO3 as a neutralizer in lactic acid fermentation, which in turn enabled simultaneous bioleaching of valuable metals (Sc, Y, Nd, and Al) from red mud. The neutralization of alkali in red mud by acids retained in lignocellulosic hydrolysate and lactic acid produced from fermentation led to effective dealkalization, rendering a maximum alkali removal efficiency of 92.2 %. Overall, this study offered a win-win strategy for the valorization of both lignocellulosic biomass and red mud.


Lactic Acid , Lignin , Lignin/chemistry , Fermentation , Aluminum Oxide/chemistry , Biomass , Hydrolysis , Industrial Waste
13.
J Hazard Mater ; 471: 134313, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38669927

Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.


Cadmium , Lignin , MicroRNAs , Plant Roots , Lignin/chemistry , Cadmium/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , MicroRNAs/metabolism , MicroRNAs/genetics , Stress, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Polymerization/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Araceae/drug effects , Araceae/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
14.
Int J Biol Macromol ; 267(Pt 1): 131444, 2024 May.
Article En | MEDLINE | ID: mdl-38588840

Ramie bone (RB), an agricultural waste generated in the textile industry, is a vastly productive renewable natural resource with the potential to be used as a source of cellulose. In this study, ramie bone cellulose (RB-CE) was obtained in one step using a simple and ecologically friendly hydrogen peroxide-citric acid (HPCA) treatment procedure that avoided the use of halogenated reagents and strong acids while also streamlining the treatment processes. Various analytical methods were used to investigate the chemical composition and structure, crystallinity, morphology, thermal properties, surface area and hydration properties of cellulose separated at different treatment temperatures. HPCA successfully removed lignin and hemicellulose from RB, according to chemical composition analysis and FTIR. RB-CE had a type I cellulose crystal structure, and the crystallinity improved with increasing treatment temperature, reaching 72.51 % for RB-CE90. The RB-CE showed good thermal stability with degradation temperatures ranging from 294.2 °C to 319.1 °C. Furthermore, RB-CE had a high water/oil binding capacity, with RB-CE90 having WHC and OBC of 9.68 g/g and 7.24 g/g, respectively. The current work serves as a model for the environmentally friendly and convenient extraction of cellulose from biomass, and the cellulose obtained can be employed in the field of food and composite materials.


Cellulose , Hydrogen Peroxide , Cellulose/chemistry , Hydrogen Peroxide/chemistry , Bone and Bones/chemistry , Green Chemistry Technology/methods , Animals , Temperature , Lignin/chemistry , Lignin/isolation & purification , Water/chemistry
15.
Int J Biol Macromol ; 267(Pt 1): 131471, 2024 May.
Article En | MEDLINE | ID: mdl-38599419

The conversion of glucose into fructose can transform cellulose into high-value chemicals. This study introduces an innovative synthesis method for creating an MgO-based ordered mesoporous carbon (MgO@OMC) catalyst, aimed at the efficient isomerization of glucose into fructose. Throughout the synthesis process, lignin serves as the exclusive carbon precursor, while Mg2+ functions as both a crosslinking agent and a metallic active center. This enables a one-step synthesis of MgO@OMC via a solvent-induced evaporation self-assembly (EISA) method. The synthesized MgO@OMCs exhibit an impeccable 2D hexagonal ordered mesoporous structure, in addition to a substantial specific surface area (378.2 m2/g) and small MgO nanoparticles (1.52 nm). Furthermore, this catalyst was shown active, selective, and reusable in the isomerization of glucose to fructose. It yields 41 % fructose with a selectivity of up to 89.3 % at a significant glucose loading of 7 wt% in aqueous solution over MgO0.5@OMC-600. This performance closely rivals the current maximum glucose isomerization yield achieved with solid base catalysts. Additionally, the catalyst retains a fructose selectivity above 60 % even after 4 cycles, a feature attributable to its extended ordered mesoporous structure and the spatial confinement effect of the OMCs, bestowing it with high catalytic efficiency.


Carbon , Fructose , Glucose , Lignin , Magnesium Oxide , Fructose/chemistry , Lignin/chemistry , Glucose/chemistry , Carbon/chemistry , Porosity , Magnesium Oxide/chemistry , Catalysis , Isomerism
16.
Int J Biol Macromol ; 267(Pt 1): 131472, 2024 May.
Article En | MEDLINE | ID: mdl-38599437

Lignin nanoparticles (LNPs) have gained significant attention for their potential as natural antioxidants. This study investigated the effect of various pretreatment methods on the lignin structure and subsequent antioxidant activity of LNPs. Among four pretreated LNPs, hydrothermal LNPs exhibited the highest antioxidant activity, surpassing unpretreated, acid-pretreated and kraft LNPs, with an impressive efficacy of 91.6%. The relationship between LNPs' structure and antioxidant activity was revealed by 2D heteronuclear singular quantum correlation (1H13C HSQC) and 31P nuclear magnetic resonance (NMR). 1H13C HSQC suggested the cleavage of ß-O-4 ether bonds, as well as a decrease in ferulic acid and p-coumaric acid, which directly influenced the antioxidant activity of LNPs. 31P NMR demonstrated a positive correlation between the total hydroxyl group content and the antioxidant activity. Besides, an isothermal kinetic model for scavenging free radicals was established based on Langmuir kinetic model instead of Freundlich model. Moreover, multilayer LNPs, based on layer-by-layer self-assembly, were prepared and exhibited remarkable antioxidant activity of 95.8%. More importantly, when blended with pure cosmetic cream, the multilayer LNPs maintained antioxidant activity of 86.7%. These finding may promote the practical applications of biomolecules, e.g. lignin additives in cosmetics and pharmaceuticals.


Antioxidants , Lignin , Nanoparticles , Lignin/chemistry , Nanoparticles/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Coumaric Acids/chemistry , Kinetics , Free Radical Scavengers/chemistry , Propionates/chemistry
17.
Int J Biol Macromol ; 267(Pt 1): 131540, 2024 May.
Article En | MEDLINE | ID: mdl-38608992

Lignin-containing nanocellulose (LNC) is a compelling alternative to traditional nanocellulose (NC), it offers enhanced yields and a reduction in the demand for toxic chemicals. This research involves the isolation of LNC from date palm waste using a green hydrolysis process and its subsequent characterization. The potential of using ionic liquids (ILs) as green solvents to isolate LNC has not yet been explored. Our findings suggest that 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) can hydrolyze partially delignified and unbleached lignocellulose, achieving LNC synthesis. The obtained LNC showed a higher yield than its NC counterpart and exhibited rod-shaped fibers with nanoscale diameters and micrometer lengths, indicating a high aspect ratio. Dynamic Light Scattering (DLS) results indicate average particle sizes of 143.20 nm for NC and 282.30 nm for LNC, with a narrow particle size distribution conforming their monodisperse behavior. Thermogravimetric analysis and differential scanning calorimetry revealed high thermal stability (initial degradation temperature = 222.50 °C and glass transition temperature = 84.45°C) of LNC. Moreover, the obtained LNC fibers were crystalline (crystallinity index = 52.76 %). Their activation energy (124.95 kJ/mol) was determined using the Coats-Redfern method by employing eight solid-state diffusion models. Overall, this study motivates the use of ILs as green solvents to produce lignocellulose derivatives that are suitable for various applications.


Cellulose , Green Chemistry Technology , Lignin , Phoeniceae , Solvents , Lignin/chemistry , Solvents/chemistry , Cellulose/chemistry , Green Chemistry Technology/methods , Phoeniceae/chemistry , Hydrolysis , Ionic Liquids/chemistry , Thermogravimetry , Waste Products , Temperature , Particle Size
18.
Int J Biol Macromol ; 267(Pt 1): 131596, 2024 May.
Article En | MEDLINE | ID: mdl-38621560

Lignocellulose biorefinery depended on effective pretreatment strategies is of great significance for solving the current global crisis of ecosystem and energy security. This study proposes a novel approach combining seawater hydrothermal pretreatment (SHP) and microwave-assisted deep eutectic solvent (MD) pretreatment to achieve an effective fractionation of Pinus massoniana into high value-added products. The results indicated that complex ions (Mg2+, Ca2+, and Cl-) in natural seawater served as Lewis acids and dramatically promoted the depolymerization of mannose and xylan into oligosaccharides with 40.17 % and 75.43 % yields, respectively. Subsequent MD treatment realized a rapid and effective lignin fractionation (~90 %) while retaining cellulose. As a result, the integrated pretreatment yielded ~85 % of enzymatic glucose, indicating an eightfold increase compared with untreated pine. Because of the increased hydrophobicity induced by the formation of acyl groups during MD treatment, uniform lignin nanospheres were successfully recovered from the DES. It exhibited low dispersibility (PDI = 2.23), small molecular weight (1889 g/mol), and excellent oxidation resistance (RSI = 5.94), demonstrating promising applications in functional materials. The mechanism of lignin depolymerization was comprehensively elucidated via FTIR, 2D-HSQC NMR, and GPC analyses. Overall, this study provides a novel and environmentally friendly strategy for lignocellulose biorefinery and lignin valorization.


Deep Eutectic Solvents , Lignin , Nanospheres , Pinus , Seawater , Lignin/chemistry , Pinus/chemistry , Deep Eutectic Solvents/chemistry , Seawater/chemistry , Nanospheres/chemistry , Sugars/chemistry , Fermentation , Microwaves
19.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605285

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Alkaloids , Plants, Medicinal , Stephania , Stephania/chemistry , Stephania/metabolism , Plants, Medicinal/metabolism , Chromatography, Liquid/methods , Lignin/metabolism , Tandem Mass Spectrometry , Plant Breeding , Gene Expression Profiling , Transcriptome , Alkaloids/metabolism , Starch/metabolism , Isoquinolines/metabolism , Tyrosine/metabolism , Lipids , Gene Expression Regulation, Plant
20.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605293

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolism , Salt Tolerance/genetics , Transcriptome , Lignin/metabolism , Flavonoids/metabolism , Antioxidants/metabolism , Carotenoids/metabolism , Ion Transport , Carbon/metabolism , Soil , Transcription Factors/genetics
...